Future Fuels: The Safe Effective Storage of Hydrogen In Fuel Cell Vehicles

Alexander W.J. Tomlinson • Dr Y. Sun • BSc Design & Prototyping Technology • School of Engineering • Faculty of Technology • May 2010

Background

This project is related to the research and development of hydrogen storage in fuel cell vehicles. It is concerned with selecting the most efficient storage medium and developing it into a design proposal based on the Product Design Specification.

Aims & Objectives

- 1) To research and evaluate what methods are available to store hydrogen safely in automotive applications
- Compare the storage mediums on: safety, cost, efficiency, reliability and overall storage capacity 2)
- 3) To research what methods are being utilized within industry
- 4) To produce a design proposal based on the PDS developed using 3d modeling and finite element analysis
- 5) Conclude if proposed design can meet the design requirements completely

Research Sources		Programs Used		
US DOEBirmingham University	 Department for Transport StorHy Consortium 	CES SelectorProEngineer	Solid WorksMechanica	

• BIS GOV UK

• IE I

Algor Fempro

Ms Excel

Results

Parameter	Unit	StorHy Target 2010	
Driving Range	km	600	
Hydrogen Storage Mass	kg	6 - 10	
System Gra. Energy Density	kWh/kg wt%	2.0 6	
System Vol. Energy Density	kWh/l kg H ₂ /100l	1.5 4.5	
Operating Temp.	°C	-40 to +85	
Refuelling Rate	kg H ₂ /min	1.2	
Delivery Rate (max.)	g H ₂ /sec	2.0 FC, 5.5 ICE	
Min. Pressure	bar	6	
Permeation Rate	H ₂ Ncm ³ /h per Linternal volume	1	
Loss of usable H ₂ (boil-off)	g/h per stored kg H ₂	1	

Fig 2: Dimensioned Engineering Drawing

Fig 3: Rendered ECF Tank

Fig 1: StorHy Storage Requirements

Fig 4: ECF FEA Internal Pressure Analysis

L 0.00417811

Fig 6: ECF Vehicle Tank Frame

Carbon Fibre Design Proposal

Cylindrical Dimensions

Radius =	0.218 m		
Height =	0.71 m		
Spherical End Caps			
Radius =	0.218 m		
Total Storage Volume	149.4 L		
Total Storage Capacity	6.13 kg		

Fig. 7: Tank Dimensions

Achievements

• This project has successfully achieved the five objectives.

Fig 5: FEA External Pressure Impact Analysis

- Evaluated compressed gas storage as most efficient at present from comparison
- Successfully researched industry and academic research and products
- Produced a ECF tank design proposal that weighs196.5kg empty and has a material cost of £1965.00(GBP).
- Hydrogen Storage is very costly at present though as technology is improved cost. should reduce down to be viable in the domestic environment.
- Hydrogen technology will not become the norm until government and industry get together to encourage its application.